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LIGHT DISTRIBUTION NEAR THE LINE FOCUS

IN A HSURIA LASER RESONATOR

INTRODUCTION

The half-spherical unstable resonator with internal axicon (HSURIA) has been devel-
oped for use with HF and DF lasers [1] . It appears to be particularly well suited to high-
energy chemical lasers of this type chiefly because of its accommodation of a thin cylindri-
cal gain medium, its high output coupling, and its relatively compact optical configuration.
The HSURIA does present some serious difficulties, however. First, it appears highly doubt-
ful that the HSURIA can contain a simple low-order optical mode which produces the
preferred output beam with a Gaussian intensity profile [2]. Second, it appears that for
high-energy systems there is a gas-breakdown problem for operation at atmospheric pressure.
It is this second problem which is addressed in the present report.

The gas-breakdown problem results from the use of the conical reflector at the back of
the annular gain region as shown in Fig. 1. The most basic HSURIA resonator as shown in
the figure consists, from left to right, of a convex spherical front mirror, an axicon com-
bined with an conical reflector (sometimes called a reflaxicon), the annular gain medium,
and a second conical reflector which serves as the back mirror for the resonator. The annular
gain medium results from constraints placed on the laser system by the present design of the
gas-flow system for the HF and DF lasers and appears to be unavoidable, at least for the
present. The reflaxicon and conical back reflector are used to accommodate this restriction
on gain-medium geometry. It does not appear possible to replace the troublesome back
reflector by a plane mirror. This results in high alignment sensitivity. In experiments with
HSURIA resonators it is nearly impossible to align and hold such a mirror in place ac-
curately enough to achieve a steady mode [3] .The conical back mirror shown in the figure
solves this problem nicely but introduces a new problem, the gas-breakdown problem
considered here.

The conical back reflector removes the alignment sensitivity, but it brings the field
inside of the resonator to a diffraction-limited line focus at which all of the energy is con-
centrated along a line a few centimeters long. Clearly for sufficiently high energy systems
such a focusing of the field inside of the resonator will cause gas breakdown, prevent proper
operation, and possibly damage laser components. Thus the output power will be severely
limited, at least for lasers operated with the resonator containing a gas at atmospheric
pressure.

In this report a theoretical study is presented in which the fields associated with the
line focus are derived, the maximum laser output beam energy is calculated for operation at
atmospheric pressure, and possible solutions to this problem are discussed.

Manuscript submitted June 20, 1979.
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Fig. 1-HSURIA resonator

FIELDS ALONG THE FOCAL LINE

The HSURIA resonator as shown in Fig. 1 includes the conical reflector R which brings
the field to a line focus centered at 0. We take 0 as the origin of coordinates oriented so
that the line focus is along the y axis.

The field in the focal region is represented in this analysis by expansion into an angular
spectrum of homogeneous plane waves incident to the origin from all directions. (Various
references [4-6] discuss the angular-spectrum representation.) We assume that the amplitude
of the plane waves A(p, q) varies as a Gaussian function of the sine of the angle that the
direction of propagation makes with the xz plane:

_ e k 2 /2 (1)

where X is the wavelength of the monochromatic light field at a radial frequency CA, k = w/c,
and p, q, and m are the direction cosines the direction of propagation for each plane wave
makes with the x, y, and z axes respectively. The angular spectrum assumed in Eq. (1) is a
straightforward modification of the angular spectrum for a point source as given by Weyl's
integral (given, for instance, in Ref. 7) to a line focus with a Gaussian y dependence.

We represent a typical Cartesian component of the electromagnetic field in a scalar
approximation by expansion into an angular spectrum of plane waves* of the form

(x)= 2 =2 f A(p, q) eik(px+qy) cos (kmz) dpdq, (2)

p2+q2 <1

*The usual angular-spectrum integral representing a traveling wave is easily modified to account for a
standing wave by replacing ekmz with cos kmz [4-6].
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where

m2 /2

By substituting Eq. (1) into (2), we have

=2 2VI?- If
k(X) = ~,/_2_7r 2J •1

UP2 +q 2 <1

eikP cos (kmz) dp ekk 2 a2 q2 /2eikqY dq.
m

We note that if we assume aX/X is large, the kernel of the integral over q contributes prin-
cipally only in the neighborhood where q ; 0. This approximation will be justified later.
Thus we can substitute the asymptotic approximation to Eq. (3), namely,

m X\,\1-p2 + O(q2),
q-+O

into Eq. (4) to obtain

1

2X/4 a f(x,) - 2i \II J
-1

-k2a2q2/2 ikqy dqe e d f -\/1 eikxP cos(k -p 2 z) dp, (6)
i-1 p 2

so that the integrals become independent. The first integral in Eq. (6) is tabulated (as in
Ref. 8, p. 85, Eq. (710.0)). Evaluating the first integral, while making the transformation
of variables

p = cos 0 1-p 2 = sin 0, dp = - sin 0 dO, (7)

we obtain

o(X) - 2o CY A
a lX-*

ir/2

f 4 cos (kx cos 0) cos (kz sin 0) dO.

0

3

(3)

(4)

(5)

o/X-*o

(8)
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The integral in Eq. (8) is evaluated in the Appendix, which gives

7rl2

f cos (kx cos 0) cos (kz sin 0) dO = Jo(k x 2 +z (9)

0

By substituting (9) into (8) we have

(X) X, II eOY2 O J (k x2 +z2 ), (10)
a/X-lo

which is the field amplitude over the focal region. (Equation (34) of Ref. 9 is a similar
result found in a different manner.)

Since it is the intensity of the field at focus which causes the gas-breakdown problem,
we use Eq. (10) to calculate the intensity as

I(X) = I4,(X)I2 =0 e-Y2 1 2 J2 (k /x-2 ) (11)

We can now justify the asympototic approximation made in Eq. (6) that a/X - o. From Eq.
(11) we see that a/X represents the length of the focal line in wavelengths, which for all
practical situations is a large number (of the order of 106).

We note that the intensity over the line focus is different from the well-known Airy
disk pattern

I2J(kcar)l 2

which represents the intensity distribution about the point focus formed by a lens with an
angular aperture a [10, section 8.5.2]. Comparison of these two functions in Fig. 2 for the
optimum case (ce = 1) indicates that the line focus is slightly sharper but otherwise ap-
parently similar. However, a calculation of the energy contained within a cylinder of radius
a centered on the focal line indicates that the line focus as given by Eq. (11) has unusual
properties.
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Fig. 2 - Comparison of the radial dependence of two focal field intensities

We obtain the energy contained over the line focus inside a cylinder of radius a cen-
tered on the y axis by simply integrating the intensity over the interior of the cylinder:

a 27r -

e= f f ]y I(x)rrdyd0dr.
0 0 _0

(13)

By substituting Eq. (11) into (13) and carrying out the integration using a tabulated integral
[11, section 11.3.34], we find that

e = 7r 3 12 aa2 I [J0(ka) + J2 (ka)] -

For larger ka, so that the radius of the cylinder is much larger than the wavelength of the
radiation, we have

e X\ 2 \/_i7- ka,
k

5

(14)

(15)
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where we have used the asymptotic form for the Bessel functions [11, section 9.2.1] . From
Eq. (15) we see that the energy increases linearly with radius a. Thus the energy is not
restricted to the region near the focal line but extends away from it even into the far field.
This is strikingly different from the conventional point focus. In Fig. 3 the energy con-
tained within a circle of radius a about a conventional point focus as given by Born and Wolf
[10, Fig. 8.13] is plotted along with the energy contained within a cylinder of radius a
about the line focus as given by Eq. (14). We see that whereas more than 90% of all the
energy in the focal plane is contained within the second dark ring of the Airy disk pattern,
the energy associated with the line focus is not concentrated so much near the focal line.
Every annular region of differential radius dr out perpendicular from the line focus contains
the same amount of energy given from Eq. (15) by

(16)de X 2 t- -k dr.

So the energy is distributed over all space in this manner.

The total energy over the surface of the reflector R is given by

00

R = 27ra f
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Fig. 3 - Comparison of the energy within a region of radius
a from the center of focus for two fields
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where we neglect the angle the surface of R makes with respect to the y axis and assume
that the reflector is parallel to a cylinder of radius a normal to the y axis. By substituting
Eq. (11) into (17) and using a tabulated integral [12, Eq. (860.110], we find that

ER = 2(ir)32aa IO J2 (ka). (18)

By making use of the asymptotic approximation to J0 (ka) for large ka [11, Eq. 9.2.1)],
we have

ER aSX 10COs2(ka - 4 .(19)

ka-o

We may now calculate the total energy output from the laser. The energy given by Eq. (19)
is that contained in the standing wave inside of the laser resonator at the surface of the back
reflector. The traveling waves each carry half the peak energy in the interference pattern
represented by Eq. (19). Thus the power carried by the traveling wave inside of the resona-
tor is just

Pi =C ax Io (20)

where c is the speed of light. If we let a represent the coupling parameter defined by

Pi ' (21)

where po is the power in the output beam and pi is the power in the traveling wave inside
the resonator, then from Eq. (20) the output power from the laser is just

Po = api= 0 ° . (22)

If we assume that reasonable values for the various parameters in Eq. (22) are cI0 = 109

W/cm2, a = 1 cm, X = 3.8 X 10- cm, and a = 0.75, we find that for gas breakdown at
109 W/cm2 light intensity the output beam of a DF laser operating at atmospheric pressure
can carry no more than 160 kW of power*.

*The breakdown threshold for 10.6-pm radiation in air is of the order of 10 W/cm , as given in Ref. 13.

For lack of data we have assumed that this result is also approximately correct for breakdown over the DF
and HF laser wavelengths.

7



WILLIAM H. CARTER

CONCLUSIONS AND RECOMMENDATIONS

The HSURIA resonator as shown in Fig. 1 appears to be unsuitable for high-power
lasers unless gas breakdown can be prevented somehow. The simplest way to solve the
problem presently appears to be operation of the laser in vacuum. Where this is not
practical, the resonator will have to be modified to eliminate the conical back reflector.
Several modified resonators have been proposed which would do this. For example, one
could replace the back reflector by a second reflaxicon and could add a simple back reflec-
tor or corner cube to return the beam back into the reflaxicon. Instead of adding the simple
back reflector, one could bring the beam from the reflaxicon around into the other re-
flaxicon to form a ring resonator. Alignment of two reflaxicons, however, is a severe prob-
lem, but is is not clear that it can be avoided.
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Appendix

DERIVATION OF EQUATION (9)

In this appendix a proof is derived for the integral formula

7r/2

J cos (kx cos 0) cos (kz sin 0) dO = J(k x2 +z2 ).

0

We expand the two cosine factors in the kernel using the formulas*

cos (dx cos 0) = JO(kx) + 2 (_l)n J2 n(kx) cos (2nd)

00

cos (kz sin 0) = Jo(kz) + 2 E J22 (kz) cos (2V0)

V=1

(A3)

and interchange the order of summation and integration to obtain an infinite series of terms.
The first term is

7rl2

J Jo(kx) Jo(kz) dO = 2r Jo(kx) Jo(kz),

0

(A4)

*M. Abramowitz and L.A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards,
Washington, D.C., 1964, Eqs. (9.1.41) and (9.1.44).
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in which the integration is trivial. The higher order terms (n > 1, 2 > 1) are of the form

iT/2

4(-l)n J2n(kX) J2 k(kz) f cos (2n0) cos (220) dO = 0, if n / 2,

0
(A5)

= (_l)n 7J 2 n(kX) J2n(kz), if n = Q,

in which the integral is easily evaluated by making the change of variables 0' = 20 and using
the orthogonality relation*

ITJ cos (mO') cos (nO') dO' = 0, if m =i n

0

(A6)
= i2 ifm=n.

_2'

Thus from Eqs. (A4) and (A5) we have

7T/2

cos (kx cos 0) cos (kz sin 0) dO = 2

0

E Jo(kx) Jo(kz)

(A7)
00 1

+ 2 E (-_)n J2 n(kX) J2 n(kZ).
n=1

The right-hand side of Eq. (7A) has the form of the right-hand side of the "summation
theorem "t:

Jo0(k x2 +z ) Jo0(kx) Jo(kz) + 2 (-1)n J2 n(kx) J2 n(kz).
n-1

By substituting Eq. (A8) into (A7), we obtain (Al), and the proof is complete.

(A8)

*H.B. Dwight, Tables of Integrals, McMillan, New York, 1961, Eq. (858.517).
tI.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, 4th edition, Academic Press,

New York, 1965, Eq. (8.531-1), in which we set 0 = 1T/2, p = kx, r = kz, and m = 1.
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